
 

 

 

 

 

 

 

 

 

 

THREE CHANNEL POLARIMETRIC BASED DATA DECONVOLUTION 

 

 

 

THESIS 

 

 

Kurtis G. Engelson, Captain, USAF 

AFIT/GE/ENG/11-10 

 

 

DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 
 

AIR FORCE INSTITUTE OF TECHNOLOGY 
 

Wright-Patterson Air Force Base, Ohio 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government. This material is declared a work of the U.S. Government and is not 

subject to copyright protection in the United States.



AFIT/GE/ENG/11-10 

 

 

 

THREE CHANNEL POLARIMETRIC BASED DATA DECONVOLUTION  

 

 

THESIS 

 

Presented to the Faculty 

Department of Electrical and Computer Engineering 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Electrical Engineering 

 

 

 

Kurtis G. Engelson, B.S.E.E. 

Captain, USAF 

 

 

March 2011 

 

 

 

 

 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



AFIT/GE/ENG/11-10 

 

 

 

 
 

 

 

 

 

 



AFIT/GE/ENG/11-10 

 

 

 

Abstract 

 A three channel polarimetric deconvolution algorithm was developed to mitigate the degrading effects of 

atmospheric turbulence in astronomical imagery. Tests were executed using both simulation and laboratory data. 

The resulting efficacy of the three channel algorithm was compared to a recently developed two channel approach 

under identical conditions ensuring a fair comparison amongst both algorithms. Two types of simulations were 

performed. The first was a binary star simulation to compare resulting resolutions between the three and two channel 

algorithms. The second simulation measured how effective both algorithms could deconvolve a blurred satellite 

image. The simulation environment assumed the key parameters of Fried’s Seeing parameter, , and 

telescope lens diameters of  and .  The simulation results showed that the three channel algorithm 

always reconstructed the true image as good as or better than the two channel approach, while the total squared error 

was always significantly better for the three channel algorithm. The next step is comparing the two algorithms in the 

laboratory environment. However, the laboratory imagery was not actually blurred by atmospheric turbulence, but 

instead camera defocusing was used to simulate the blurring that would be caused by atmospheric turbulence. The 

results show that the three channel significantly outperforms the two channel in a visual reconstruction of the true 

image. 
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Three Channel Polarimetric Data Based 
Deconvolution 

1. Introduction 

1.1 Motivation for Research and Applications 

 Polarimetric imaging in astronomy offers one distinct advantage when compared to standard imaging 

techniques. This advantage arises when imaging man-made objects, because of the tendency for these objects to 

reflect polarized light more than its surroundings. The polarized data that is collected from objects in space can be 

very beneficial in image analysis, and is proven in this research. However, polarimetric imaging performance is 

limited by the blurring caused by the atmosphere. Therefore, it is very beneficial to combine polarimetry with an 

image processing technique known as deconvolution to deblur images degraded by the atmospheric conditions.   

 One of the main goals of this research is to develop a three channel polarimetric deconvolution algorithm 

with superior resolving capability to that of the prior researched two channel approach [6]. A two point resolution 

metric is used in this research to determine which imaging technique is superior. The technique is similar to that 

used by Lord Rayleigh in that resolution is determined by the ability to resolve two point sources [3]. A majority of 

simulations and critiques to the algorithm proposed in this thesis were centered on the idea of resolving two point 

sources. The efficacy of the deconvolution algorithm to resolve two point sources is directly related to how well it 

will deconvolve a more complex image, such as a satellite image. 

 Another goal of this research is to not only resolve sharper images, but also to collect and estimate 

polarization data from an object in observation. Polarization data can be used specifically to assist in identifying a 

target, or more generally to identifying materials [5].The proposed algorithm is capable of estimating a parameter 

defined as the polarization attenuation factor. This factor is mathematically dependent on the angle of polarization of 

the light reflected by the material in the observation. The angle of polarization data is the potentially useful 

information in identification of materials or targets. 
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 The capability to analyze sharper astronomical images and corresponding polarization data can prove to be 

very useful for the United States Air Force. As the DoD’s perception of war in space evolves it is necessary that we 

always maintain space superiority. Cutting edge surveillance, intelligence, and reconnaissance are imperative to 

attaining space superiority, and that is where this research potentially contributes. For example, someday it may be 

very useful to closely monitor our satellites and enemy satellites. Satellites in extreme distant orbits (Geostationary) 

do not return much light and provide very dim and low resolution images. If an enemy satellite was in close 

proximity to our own satellite, we may be interested to know that. Unfortunately, an image from current telescopes 

may not show a distinction between two satellites in relatively close proximity, but more likely will blur them 

together into one mass of light. However, if polarimetry in conjunction with deconvolution is used it may become 

more apparent that there are two satellites instead of one. The deconvolution provides for more clarity in the image 

by deblurring, while the polarization information can help in determining if the object in observation is man-made.  

This type of capability is just one example of how the USAF can retain space superiority. 

1.2 Problem Statement 

One major problem with imaging objects in space is the negative effects the atmosphere introduces into the 

imaging process. Specifically, atmospheric turbulence causes aberrations in images when viewed from the surface of 

earth [12:69]. Figure 1.1 demonstrates the problem presented by atmospheric turbulence. This scenario shows a star 

that is a great distance away from the earth. The light from the star will naturally radiate in a spherical manner, but 

as it travels a distance of “near infinity” it becomes a plane wave. As the wave enters the earth’s atmosphere it starts 

out flat, but as it travels through the phase front changes and becomes degraded.  

 Atmospheric turbulence causes time delays in the light wave as it passes through the atmosphere, but the 

delay is not uniform across the entire plane wave. The tilt illustrates how the right portion of the light passes through 

after the left side. This delay will inevitably have an effect on the image formed at the detector of camera, which is 

on the other side of the lens of a telescope.  The lens of the telescope will cause all incoming light outside to 

converge as shown towards the detector. An ideal scenario would be that the light comes in untilted and forms an 

image centered on the detector, but in reality this is not the case. An input of tilted light on a lens will result in a 

shifted image on the corresponding detector, based on the shift theorem of Fourier transforms [3:8]. After a “long” 

exposure time, there will not be just one shift of the point source, but an accumulation of many shifts, which appear 
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as blur in the image There are other aberrations in the imagery due to atmospheric effects, but tilted light is the 

dominant source of blurring in long exposure astronomical imagery [12:69]. Image A in Figure 1.1 shows a 

simulated example of an ideal image of two point sources (top of figure), and the resulting blurry measured image at 

the detector (Image B). The bottom image in the figure will be referred to from now on as measured data d(x,y).  
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Figure 1.1: Left-Instantaneous example of the consequences of atmospheric turbulence on a traditional non-
polarimetric imaging system. Image A- Example of two binary star true intensity. Image B- Example of data 
measured on camera detector known as measured data  
 

1.3 Scope of Research Effort 

 The goal of this research is to provide an effective three channel polarimetric deconvolution algorithm for 

reconstructing images which have been degraded by atmospheric turbulence and noise. This thesis explains in 

entirety the process used for deblurring and de-noising images. Results are shown for both simulation and laboratory 

data. 
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1.4 Chapter Summaries 

Chapter 1: Introduction 

 This chapter introduces the topic of three channel polarimetric imaging, by first explaining the motivation 

and applications of it. It then gives a concise problem statement, followed by the scope of this actual research effort.   

Chapter 2: Background 

 Chapter 2 provides a chronological background of all the research performed in the last four decades, 

which have significantly contributed to the research effort described in this thesis. 

Chapter 3: Simulation Description 

 A description of the simulation is the most important part of this thesis. Chapter 3 starts by introducing the 

convolution model, which addresses how an ideal image is degraded. The convolution model is broken up into three 

subsections: an explanation of optical transfer functions, the noise model, and a section to explain how an image is 

actually degraded via a process explanation. The second subsection to Chapter 3 is the deconvolution model, which 

explains the process for inverting the convolution model. It starts by introducing the process of deconvolution, and 

then transitions into a more technical discussion of the equations and derivation necessary to have a functional 

deconvolution algorithm. It finishes with a brief discussion on dual point source pixel spacing for the ideal image in 

simulation. 

Chapter 4: Simulation Results 

 The simulation results section is broken up into two major parts. The first section addresses the simulation 

results for dual point sources, and the second discusses the results for simulations executed with an ideal satellite 

image. It is shown in all simulation cases that the three channel algorithm outperforms or performs the same as the 

two channel in aesthetics, while the three channel always outperforms in total squared error calculations. 

Chapter 5: Laboratory Imagery Results:  
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 Laboratory imagery is the final step taken in this thesis to compare both algorithms. This section explains 

the laboratory set up, image degradation model, and analysis of results. The results show that the three channel 

algorithm outperforms the two channel algorithm.  

Chapter 6: Limitations 

 The limitations chapter explains potential limitations of the three channel algorithm either in simulation 

scenarios or laboratory data scenarios. The four limitations explained are the effect of lens diameter to seeing 

parameter ( ) ratio, the absence of blind deconvolution, lack of algorithmic autonomy, and diversity of multi-

channel data due to polarization.  
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2. Background 

 William Richardson began the modern era of deconvolution in image processing when he published an 

algorithm that was dependent on Bayes’s Theorem.  He describes in his journal article Bayesian-Based Iterative 

Method of Image Restoration [11] how an image degraded by a point spread function can be restored to a near 

perfect original image all through use of Bayes’ theorem. He built the framework for many future researchers when 

he derived an iterative approach of applying Bayes’s theorem to estimate the true values of an image given the 

degraded image and a known point spread function. In 1974 Lucy also devised a clever use of Bayes’s theorem in 

application to estimation theory and he took it one step further by including the concepts of maximum likelihood in 

his estimation process [10]. Lucy’s work and concepts were applied to astronomy, but not astronomical imaging, 

which is the topic of this research effort.  

 In 1976 Dempster, Laird and Rubin wrote a journal article for the Royal Statistical Society called, 

Maximum Likelihood from Incomplete Data via the EM Algorithm [1], which had a tremendous impact in image 

processing theory. In it they describe a process called the Expectation Maximization (EM) process. The paper 

presents an iterative approach to maximum likelihood estimation with the observed data being referred to as 

incomplete data.  The EM process is dependent on two types of data, the first being incomplete data and the other 

complete data. The complete data is an abstract idea and its relevance and application to this research is explained 

later in 3.2.2. The process was termed the EM process because each iteration has two key steps. The first is the 

expectation step, and the second is the maximization step [1].  These steps are also more clearly defined with respect 

to this research in 3.2.2.  

 In 1982 Shepp and Vardi wrote an article on emission tomography, where they used concepts of maximum 

likelihood estimation and EM to reconstruct images. This document is a major source of interest for this research 

because of the developments these two men made in application of the EM process [14]. Specifically, their results 

for how to define the conditional expectations were used later by Timothy Schulz in his research [13]. The 

mathematical model developed throughout this thesis is most closely related to the work described by Schulz in his 

1993 Joint Optical Society of America article [13]. Section 3.3.2 details the mathematical model used in this 

research and a detailed discussion of the similarities and differences between Schulz’s model and our own.  
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 About thirteen years later in 2006 Major Dave Strong continued researching in the application of the EM 

process to astronomical imaging. He advanced Schulz’s research one step further and developed a two channel 

polarimeter, which used one channel of unpolarized light and one channel of linearly polarized light. His solution 

was also restricted to short exposure imagery as was Schulz’s [15].  

 Soon after Strong finished his dissertation, Daniel LeMaster researched in the field of polarimetric imaging. 

In 2007 LeMaster researched a similar three channel approach to what has been developed in this research, but there 

are some critical differences [8]. First and most importantly, he was only researching deconvolution algorithms for 

short exposure imagery, where this effort only considered long exposure imagery. LeMaster also used different 

polarization analyzer settings (0˚, 60˚, -60˚) than used in the three channel approach described throughout this thesis 

(0˚, 45˚, 90˚). The difference in polarization analyzer settings determines a different derivation resulting in a 

different deconvolution algorithm. He also directly estimated the angle of polarization of the light in his 

deconvolution algorithm, where he discovered that the estimates of the angles of polarization are very susceptible to 

noise and time consuming to obtain. The deconvolution algorithm developed in this research does not estimate the 

angle of polarization, but it does estimate the polarization attenuation factors, which are dependent on the angle of 

polarization.  Estimating this parameter may prove to be less susceptible to noise and require fewer mathematical 

steps. This concept is further explained in 3.1.3 and 3.2.2.  

 LeMaster was able to effectively restore images using the developed three channel deconvolution 

algorithm, but he was never able to effectively estimate the angle of polarization. LeMaster’s dissertation [8] also 

lacked one important thing and that was a comparison of a three channel versus two channel algorithm. Conversely, 

this research effort is focused on a comparison of three channel versus two channel algorithm. The two channel 

algorithm compared to was developed by Captain Steve James in 2008 [6]. In his research he developed a two 

channel polarimeter deconvolution algorithm capable of restoring images corrupted by noise and blurring. His 

algorithmic solution was determined through use of a Bayesian estimation method called maximum a posteriori 

(MAP) estimation [7: 350]. He also utilized the concepts of complete and incomplete data, which are defined in the 

EM process [1], [7: 187]. It was through the use of MAP estimation and the EM algorithm that he was able to 

develop a deconvolution algorithm capable of restoring images to a less noisy and blurred state. The three channel 

approach described in this thesis closely mimics his strategy of using MAP estimation in conjunction with the EM 
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process, but requires a different mathematical derivation to arrive at the update equations inside the deconvolution 

algorithm.  
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Figure 2.1: Literature Review Timeline: chronologically displays contributions used to develop and execute 3 
channel polarimetric deconvolution of astronomical images. 
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3. Simulation Description 

3.1 Convolution Model 

 This section addresses the transformation process of ideal true intensity to the blurred and noisy measured 

data. First, the idea of true intensity must be understood. One example of true intensity can be seen in Image A of 

Figure3.1, where there is an image of two binary stars. It is called true intensity because it is a perfect and 

unaberrated image. It is also the benchmark data set used to compare results to later on.  

 Figure 3.1 demonstrates the process by which the true intensity is processed by a camera. It also provides a 

block diagram of the optical system, where the input is true intensity convolved with the system point spread 

function (PSF) . Due to the properties of linearity and shift invariance the system can be 

characterized by the PSF, as an electrical system can be characterized by its impulse response[3:19]. The system 

PSF is a combination of the long exposure PSF, , convolved with optics based PSF,  (refer to Equation (3.4)). 

The measured data is the result of a convolution of true intensity with plus noise. The blurry but non-

noisy image  is related to the true intensity,  via equation: 

 
(3.1)  

It is space invariant because only depends on the distances between points and , 

where is the detector plane coordinates and  is the observation plane coordinates [3:18-21].  
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Figure 3.1: A continuation of Figure 1 with the deconvolution model boxed off to the left. Image A- True intensity. 

Image B- True intensity blurred with long exposure transfer function  . Image C- True intensity blurred with 

optics based OTF  . Image D- True intensity with added Poisson modeled noise. Image E- Data measured at 
camera detector . 

3.1.1  Optical Transfer Function Model 

 There are two sources of blurring specifically considered in this research in the degradation process of the 

data. Image B in Figure 3.1 demonstrates the first source of blurring is caused by atmospheric turbulence. The 

blurring caused by atmospheric turbulence is modeled with the long exposure optical transfer function (LEOTF), 

which is the Fourier transform of the PSF . It is the cause for the most severe degradation to the true intensity. 

This OTF is only used in long exposure imagery ( ). If short exposure imagery were relevant to this 

research as it was to some of the previous efforts discussed in section 2, then the OTF would be modeled with a 

different equation than the LEOTF. The formula for the LEOTF is given by Equation (3.2) [2:402,439]. Notice that 



 

11 

 

the resulting magnitude of  is solely dependent on r0 (Fried’s Seeing [2:429-431]). Fried’s Seeing Parameter 

was developed to assist in modeling the atmospheric effects in imagery. A key ratio is in the exponent of Equation 

(3.2), where the ratio   describes the effect of the atmosphere in the image. In this equation  is the mean 

wavelength of the light,  is the spatial frequency and  is the effective focal length of the optical system. If the ratio 

is greater than 1, then the atmosphere will start to introduce blurring into the image. If it is less than 1, then the 

resolution of the image is unaffected by the atmosphere. [2:429-431].   Variables  and  represent the spatial 

frequencies in the x, y plane (camera detector plane), where the OTF is only relevant in the spatial frequency 

domain, and . 

 (3.2)  

 

 The least significant contribution in the blurring of the true intensity is due to the optics based OTF ( ) 

given in Equation (3.3) [2:364]. is the frequency domain representation of the system impulse response or PSF, 

 represents the pupil function, where  are spatial coordinates in units of meters. In this research 

the pupil function is defined at the lens of the telescope, where the pupil function directly determines the resulting 

optical transfer function [3:141]. The pupil function accounts for the effects caused by an aperture in a optical 

system [3:107]. Equation (3.3) is only true for the case of an incoherent light source. The blurring caused by 

accounts for diffraction and other aberrations in the measured data. In this research diffraction is the only cause 

for any blur to the true intensity with respect to . A diffraction pattern can be seen in Image C of Figure 3.1. This 

example shows how miniscule the diffraction based blurring is compared to the LEOTF blurring. The product of 

both OTFs gives the OTF for the system shown in Equation (3.3).  is the composite of both OTFs and is 

used for degrading all true intensity.  

 
(3.3)  

 
(3.4)  
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3.1.2  Noise Model 

 There are two types of noise to consider in this research and those are readout noise and photon counting 

noise. Both types of noise are present in photon counting cameras. Readout noise, also referred to as thermal noise is 

caused by imperfections in the analog to digital conversion process in a camera, and the injection of currents from 

other electronics in the circuitry. Readout noise variance can be measured by blocking light from entering the 

camera. The second type of noise considered is photon count noise, and is assumed to be the dominant source of 

noise in this research. It is safe to assume this if an avalanche photo-diode (APD) is used. The thermal noise 

becomes negligible due to the high amplification effects of this device. In this case the signal generated by each 

photon is amplified to a level above the readout noise level. Photon count noise is caused by incoherent light (i.e. 

sunlight) and can be modeled with Poisson statistics [12:16], [2:485] .The random arrival of photons counted by a 

camera detector is the consequence of photon count noise. Figure 3.2 shows an integration time window where there 

are eight expected photons arrivals along with the actual amount of nine arrivals. The irregular time of arrival of each 

photon contributes to the photon counting noise. 

 Photon counting noise is best described by use of the Poisson PMF [2:485]. Equations (3.5) and (3.6) show 

the general probability mass function for a Poisson random variable, and a Poisson PMF relevant in notation to this 

research [9:508]. In the general Poisson PMF equation  is the random variable representing the actual number of 

occurrences. is the mean number of occurrences.  is the probability that the number of event occurrences 

is equal to . Similarly, Equation (3.6) presents a two-dimensional case where the mean number of occurrences 

is , also known as the intensity, and the actual number of occurrences (photon counts at each pixel) is .  

 (3.5)  

 
(3.6)  
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 Equation (3.7) shows how the SNR is calculated for all scenarios. It also shows how one of the two 

variables in the denominator can be the dominant source of noise, if it is much greater than the other. The gain factor 

GAPD of the APD is shown in bold and only relevant if an APD is used.  represents the thermal noise variance in 

electrons.  is the signal strength in photons with photon counting noise included in the signal [12:23-24]. 

Assume that  is negligible compared to the noise included in  multiplied by GAPD. With this assumption 

the SNR ends up being the variance of the signal divided by the standard deviation of the signal, due to the 

properties of Poisson random variables. 

 
(3.7)  

 

Photon-Impulse Train With No Random Arrival

Random Photon 

Arrivals

Integration time window 

of the detector

TIME
 

Figure 3.2: Random Photon Arrivals: There are expected to be 8 photon arrivals in the integration time window, 
but due to randomosity of photon arrivals there actually 9 photon arrivals, and not at expected times. 

3.1.3  Simulating Image Degradation 

 This section describes the simulation process for degrading the ideal true intensity to what is referred to as 

the measured data . An example of measured data can be seen in image E of Figure 3.1. Figure 3.3 displays 

an example diagram of a potential three channel polarimeter setup. Notice that each polarization analyzer is set in a 

particular direction and that there are three detectors for collecting three channels worth of “measured data.” The 

three polarization analyzers combined with three channels of measured data deem the necessary title 3 Channel 

Polarimeter.  
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Figure 3.3: An example of the setup for a three channel polarimeter relevant to this research effort. There is an 
assumed incoherent light input to the optical system. There must be three polarization analyzers set as specified 
above, with three detectors to collect data from each analyzer. 

 Figure 3.4 below shows the logical flow of the data simulation process. The first three rhombuses represent 

data that is either created in the simulation program or uploaded for use in the simulation program. The true degree 

of polarization represents the degree to which light is polarized in the scene. Only certain parts of the object in 

observation will reflect polarized light. As the polarized light passes through the polarization analyzers a fraction of 

the light will be lost, unless it is in perfect alignment with one of the polarization analyzers.   

 The  data represents the angle of polarization of each element in the polarization data. More 

importantly,  is used to calculate three  values, which corresponds to the three polarization 

attenuation factors. The variables , , and  indicate the relative alignment of the polarized 

light with each channels’ polarization analyzer. 

 The next three rectangles represent calculations for , , , LEOTF, and optics based 

OTF. Rectangle four initiates the process for degrading the true intensity. There are four sets of data that result from 

this step. First is data1, which represents the unpolarized portion of light from the object being observed. The last 

three data sets correspond to the polarized light reflecting off the object in observation. Rectangle five represents the 

process for adding Poisson noise to the blurred data sets. It is most important here to understand that data1 is used to 
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calculate the three unpolarized noise realizations along with the first polarized realization. Finally, the simulated 

measured data is calculated by adding each respective unpolarized component with its polarized partner. The three 

resulting data sets and are shown as an example in Figure 3.5.  

Input or 
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Truth Data

Input or 
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Polarized 

Data

Input or 

Create α 

Data
(Angle of 

polarization)

Calculate C1&2&3

C1(z,w)=cos2(α(z,w) - 0)
C2(z,w)=cos2(α(z,w) - 90)
C3(z,w)=cos2(α(z,w) - 45)

Calculate hLE

Need: Diameter of 

Lens, r0, detector 

array and pixel 
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Calculate h0

Need: Pupil Function, 

shape and size of 
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Convolve Truth Data w/ hsys
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data1=unpolarized
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data3P

data2UP

+=

=

=

+

+ data3UP

Add Poisson noise to blurred data sets

Output = 6 sets of blurred/noisy data:

data1 data1UP, data2UP, data3UP

data2

data1 data1P

data2P

data3Pdata3

d3(x,y)

Figure 3.4: Logical flow of data degradation simulation process. Rhombuses represent creation or input of data to 
simulator. Rectangles represent calculations made in the simulation. 

 

Figure 3.5: Examples of 2 binary stars degraded by Poisson modeled noise and blurring from . Left- . 

Middle- . Right- . 

 Equations (3.8-3.10) are the average value of and respectively. These terms can 

also be referred to as intensities, and . The intensity measurements look very similar to the 

measured data, but have no noise added. An example of an intensity image is shown in image B in Figure 3.1. 

polarized blurred data w/ C1

10 20 30

10

20

30

polarized blurred data w/ C2

10 20 30

10

20

30

polarized blurred data w/ C3

10 20 30

10

20

30



 

16 

 

Equation (3.11) shows the mathematical relation between measured data and intensity. For further clarification of 

what the other variables in the Equations (3.8-3.10) are equivalent to refer to Table 3.1. These equations are a simple 

consequence of Malus’ Law, which describes the intensity of the light passed by a polarization analyzer. ) [4:332, 

13:1067].  The discrete convolutions are approximations of the continuous case. These equations are also further 

explained in the derivation section (3.2.2).  

 

(3.8)  

 

 

 

 

(3.9)  

 

 

(3.10)  

 

 (3.11)  

 

Table 3.1: Equivalencies between Equations (3.8-3.10) and variables described in Figure 3.4 

Equations 3.8-3.10 Figure 3.4 Notes 

  data set  

  data set Degree of Polarization 

 True intensity A.K.A object 

  data set Fourier Transform:  

 

 Next, an intuitive explanation of Equations (3.8-3.10) may be helpful in preparation for the deconvolution 

model (section 3.2), since it describes a derivation with these equations as a starting point. Remember that since the 
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optical system is linear and space invariant, the convolution of the input with a PSF can be generalized to the 

superposition integral as shown below (also in Equation (3.1)), but now the polarization analyzers must be 

accounted for in the convolution integral. The double sum of multiplied by the system PSF 

 is a convolution and it is this function that explains how objects in the observation plane are seen in the detector 

plane. Also, notice that P, C1, C2, and C3 are just scalars on the range from (0,1). The next thing to notice is that the 

double sum is broken up into two components. The first component represents the unpolarized portion of light, 

while the second is the polarized portion. These equations show there is a combination of unpolarized light along 

with the potential for polarized light, depending on the object in observation. It is shown in Malus’ Law that 

approximately half of the unpolarized light will be transmitted past the polarization analyzer [4:332].  

 

  

3.2 Deconvolution Model  

 This section addresses the restoration process for transformation of measured data  to an estimated 

image that resembles the true intensity. The improvement in image sharpness is entirely a result of the measured 

data being run through a deconvolution algorithm. An extensive discussion of the mathematical derivation regarding 

the deconvolution algorithm takes place in this section after the simulation description is provided. The 

deconvolution algorithm works as displayed in Figure 3.6. 

 In simulation initial estimates for seven parameters must be created before the deconvolution can start. 

These seven parameters are shown at the top of Figure 3.6. These estimates constantly improve inside the 

deconvolution loop until a declared amount of iterations are exceeded. Although other criteria can be used to stop 

the algorithm they would require user input as does a maximum iterations criteria. Therefore in both cases there will 

be no algorithmic autonomy. This concept is explained later in Section 6.3. Definitions for the initial estimates are as 

follows: 

1. r0 = Fried’s Seeing Parameter (same value used in ) (refer 3.1.1, and [2:429] ) 

2. = Overall System Optical Transfer Function Estimate (refer to Equation (3.4)) 



 

18 

 

3.  = Object Estimate (arbitrarily set to 1)(refer to Table 3.1) 

4.  = Degree of Polarization Data (arbitrarily set to 1/2) (refer to  3.1.3, 3.2.2-Equation (3.32), and 

3.2.3) 

5.   = Polarization Attenuation Factors (calculated from arbitrary set value ) (refer to 3.1.3 & 

Table 3.2) 

6.   = Intensity estimates (calculated from exact value and arbitrary values for  

and ) (refer to Equations (3.8-10)) 

7.  = Conditional Expected Value of Complete Data Estimates (calculated from 

exact and measured data values, and arbitrary values for  and )  (refer to 

3.2.2 Step 4 [13:4], [1]) 

 

Deconvolution Loop

Initial Estimates

1. r0

2. hsys(x-z, y-w)
3. o(z,w)
4. P(z,w)
5.C1&2&3(z,w)
6. i1&2&3(x,y)
7. Conditional Expected Value 
of Complete Data

Solve P(z,w) 

Polynomial, and 

update

Update o(z,w)
Update 

C1&2&3(z,w)

Update 

i1&2&3(x,y)

Update 

Conditional 

Expected Value of 

Complete Data

Max Iterations 

Exceeded?

Final Image 

Estimate

Exceeded

Not Exceeded

Loop

 

Figure 3.6: Deconvolution algorithm flow chart: The parallelogram consists of the seven necessary initial 
estimates. The large rectangle consists of all the calculations in the deconvolution loop. The diamond represents 
the decision to terminate to the deconvolution loop.  

3.2.1  The Update Equations 

 Update equations are the key to this entire research effort. The results of these equations are responsible for 

the restoration process’ level of success. The deconvolution loop in Figure 3.6 shows the parameters that are 

iteratively updated. Listed below in Equations (3.12 - 3.16) are the corresponding update equations (excluding 

intensity and conditional expected value of complete data, refer to Equations (3.8 - 3.10) and (3.25-28) respectively). 

Note that for the sake of brevity that all plane coordinates are not included for the the degree of polarization, 

the measured data  and the complete data .  Following this listing of 

equations is the math necessary to arrive at these update equations. Section 3.2.2 will briefly explain how each of 

these update equations are determined and what they are solving for.  
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(3.12)  

 (3.13)  

 (3.14)  

 (3.15)  

 (3.16)  

3.2.2  Partial 3 Channel Polarimeter Derivation  

 A good portion of this research effort lies in the mathematical derivation for the three channel polarimeter 

restoration algorithm. This derivation relies on the results of years of research, as discussed in Chapter 2. This 

section explains the use of MAP estimation techniques in combination with the EM process.  Essentially this 

derivation explains the mathematics necessary to take a blurred and noisy image and transform it into a sharper 

looking image.  

 The six steps listed below will briefly summarize the derivation for the three channel polarimeter 

restoration algorithm, while the full derivation is available in Appendix A. The first three steps below define the 

mathematical models for the types of data considered in this research, while the last three steps are the signature 

steps in the Expectation Maximization process.   
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Table 3.2: Definitions of the variables for the 3 Channel Polarimeter Derivation.  

Detector Plane coordinates:  

Observation Plane coordinates:  

Incomplete Data (measured):  

Complete Data Unpolarized Component 
(mythical): 

 

Complete Data CH 1 Polarized 
Component (mythical) 

 

Complete Data CH 2 Polarized 
Component (mythical) 

 

Complete Data CH 3 Polarized 
Component (mythical) 

 

True Intensity (object):  

Simulated Image (intensity):  

System Point Spread Function:  

Pixels, or image size:  

True Degree of Polarization:  

Polarization Attenuation Factors: 1/2  

 

Step 1: Obtain a Statistical Model for the Incomplete Data (Measured Data)  

 Recall Equations (3.8-10) from section 3.1.3 and the double sums over the values , which are the 

coordinates in the observation plane (outer-space). Notice that the intensities have coordinates in the  plane, 

also known as the detector plane (camera detector). These three equations mathematically explain the occurrence of 

a convolution. Also recall that the measured data (equivalent to incomplete data) is . It 

is called incomplete data because it is not a direct measurement of an object in observation, whereas the complete 

data represents a direct measurement of an object in observation (refer step 2). The average value of the incomplete 

data shown below and in Equations (3.8-3.10) builds upon Schulz’s model by accounting for polarization effects, 

thus adding the true degree of polarization and polarization attenuation factors. [13: 1067] 
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Step 2: Invent a Set of Complete Data (Mythical)  

 The complete data  is a mathematical construct designed to be a direct measurement of the 

image without the convolution operation, therefore it represents the object in observation before its light passes 

through the atmosphere. The convolution function is the mathematical reason for the occurrence of blurring. 

Equations (3.17-3.19) are broken up into two parts. The first part is a double sum of the unpolarized component of 

the complete data, and the second part is the double sum of the polarized component of the first channel of data. The 

complete data are chosen to be independent Poisson distributed random variables, which means that the incomplete 

data will also be a Poisson distributed random variable. This is due to the statistical property that the summation of 

Poisson random variables is a Poisson random variable. [13: 1067] Note that the mean of unpolarized complete data 

are mathematically equivalent so, . This concept is applied in the next step. 

 

 (3.17)  

 (3.18)  

 

 

(3.19)  
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Step 3: Select a Statistical Model for the Complete Data  

 The main goal in selecting a statistical model is ensuring statistical consistency between the incomplete and 

complete data. As stated in the last step the complete data in this derivation was chosen to be modeled as Poisson 

data, because the sum of Poisson random variables is a Poisson random variable [13: 1067, EQN 15]. Equations 

(3.20-3.23) show the mean of the complete data sets. 

 

 

 

Where  in unpolarized case 

(3.20)  

 (3.21)  

 (3.22)  

 (3.23)  

 

Step 4: Formulate the Complete Data Log-Likelihood 

 The complete data log-likelihood function is formulated assuming that the complete data are statistically 

independent. Equation (3.24) shows the log of the joint probability for all of the complete data. Once again, this 

equation resembles Schulz’s log-likelihood function, except for the notational differences, additional channels of 

data, and polarized data ( ). [13: 1067-Equation 17] 

 (3.24)  
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 Notice the addition of polarization prior to the end of Equation (3.24). The main reason for 

adding this is to constrain the values of polarization to be between 0 and 1, which is “prior” known information 

[7:310 & 350].The PDF chosen to model this prior is a Super Gaussian, . This PDF 

was chosen because it approximates a uniform PDF on (0,1) for high values of n. A uniform PDF has to be 

approximated because of discontinuities in its derivative [6:23]. 

Step 5: Expectation Step 

 The conditional expected value of the complete data log likelihood must be computed in order to formulate 

the EM algorithm.  The conditional expectations of each piece of complete data are conditioned on the incomplete 

data and the estimates of , , , , and . They are shown below in Equations (3.25-

3.28) and computed using results from Shepp and Vardi [14:115 & 119], [13:1067, EQN 26]. The resulting 

conditional expectations will differ from the results derived by Sheep and Vardi, and also from Schulz’s results for 

conditional expectations [14], [13]. This is strictly due to the fact that this research is using three channels of 

polarimetric data.  
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 (3.25)  

 (3.26)  

 (3.27)  

 (3.28)  

 The expected value of the complete data log likelihood is added to the natural logarithm of the prior to 

yield the Q function shown below: 

 (3.29)  

 

Step 6: Maximize the Expected Value  

 This step requires the most algebraic manipulation, since the derivative of   with respect to , 

, , and must be calculated, and then set equal to zero. For the sake of 

brevity only the results of each derivative will be shown, along with the four conditional expectations. A more 

detailed derivation is shown in Appendix A.  

 (3.30)  

 (3.31)  

 (3.32)  
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 The most important operation in the deconvolution loop is the estimation of . This is accomplished 

by solving for the roots in Equation (3.32). Once  has been estimated the object, intensities,  and complete 

data expectations can be estimated (refer Figure 3.6). 

3.2.3  Point Source Pixel Spacing 

 One last concept needs explanation before the simulation results can be discussed and this is how the ratio 

of the lens diameter  determines the dual point source pixel spacing in the detector plane (refer to Figure 3.7 and 

Equation (3.33). If an observer is viewing two stars in space that have an angular separation radians through a 

meter diameter lens, then the resulting spacing in the detector plane will be  meters. For example, assume 

simulation parameters equal to: , resulting in . If the 

lens diameter changes to  then   must change accordingly to . Assuming that the camera pixel 

detector size = , then a  lens would have  spacing, whereas the  lens would have 

spacing. To ensure consistency in all simulations this fact needs to be considered, because the angular 

separation of the stars will not change, but the simulation parameter  will change to  or , resulting 

in different values for pixel spacing. These two lens sizes were chosen because they are the actual sizes of telescope 

lenses at the Maui Space Surveillance Site (MSSS) [16]. Use of these lens sizes ensures more meaningful results for 

Maui Air Force Research Labs, the sponsor of this research.  

Lens

ϴ
ϴ Δx

D

 

Figure 3.7:  is the angular separation of 2 point sources in space.  is the diameter of the lens of a telescope and 
  is the distance or pixel separation in the detector plane. The angular separation does not change, but a 

change in  will determine a change in . 

 (3.33)  
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  Another topic related to the point source pixel spacing is proper sampling of data. To assure 

proper Nyquist sampling criteria consider Equations (3.34) and (3.35) [12:57].  Assume the following parameters for 

a given scenario:  Also, assume that focal length  is 

adjustable, which in the case of MSSS telescopes is true. Based off of Equation (3.35) these parameters determine 

 to ensure proper sampling in space. If , then , giving a Nyquist sampling 

frequency of . 

 (3.34)  

 (3.35)  
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4. Simulation Results 

 Simulation results are important for learning the ideal performance of the three channel polarimeter. It is 

possible to accurately measure performance because the final object estimate can always be compared to the true 

intensity. This comparison allows for a total squared error (TSE) comparison and most importantly a resolution 

comparison. Resolution comparisons are important, because the goal of this research is to “see” whether the three 

channel approach can improve upon the two channel approach.  

 This section analyzes the simulation results from two types of simulations. The first type of simulation is a 

dual binary star simulation. In space imaging a dual point source image could be the result of viewing two stars 

close to each other in an angular separation sense. The second type of simulation is executed with an actual satellite 

image.  

4.1 Dual Point Source 

 The dual point source simulation results are shown in Figures 4.1 and 4.2 below. Both figures are 

composed of six images. The top left image in Figures 4.1 and 4.2 are the true intensity. It represents two point 

sources with pixel spacing equal to nine pixels for the  lens simulation and twelve pixels for the  

case. The degree of polarization data is not shown, but in all dual point source cases the left point was fully 

polarized and the right point was half polarized. The top right image in both figures is the final object estimate for 

the two channel case. All other images in both figures are final estimates for the three channels at different  

values. The corresponding TSEs are displayed in a table below each representative figure. The TSE was calculated 

using Equation (4.1) below. The comparisons between the two and three channel algorithms are consistent in that 

the total intensity estimated in each image is conserved. This ensured that the total number of photons in the true 

intensity and final object estimate are the same. 

 (4.1)  

 The figure captions also define some other very important simulation parameters. First is the lens size in 

centimeters. Second is the seeing parameter r0 in centimeters. The third value requires a little explanation, since it 

differs for the three and two channel results.  To ensure consistency in comparisons the signal strengths must be 
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relatively equal. This means that if the true intensity’s two point sources are represented by 200,000 photon counts 

in each white pixel in the two channel polarimeter, the three channel must have 2/3 the amount of photons, because 

it splits the light signal into three channels, versus two channels. The fourth value is the point source pixel spacing. 

Fifth is the number of iterations used in the deconvolution. The sixth number is the angle of polarization in the 

observation plane. This angle directly impacts the three polarization attenuation factors (refer to the first calculation 

rectangle in Figure 3.4 to see mathematical correlation). Lastly, the numbers along the x-axis and y-axis show the 

size of the image. Simulations for the  lens used an image size of 32x32 pixels. Simulations for the  

lens used 46x46 pixel images.  

4.1.1:  160 cm Lens Results 

Estimated Object 3CH (199 deg)

pixels

p
ix

e
ls

10 20 30 40

10

20

30

40

Estimated Object 3CH (123 deg)

pixels

p
ix

e
ls

10 20 30 40

10

20

30

40

Estimated Object 3CH (300 deg)

pixels

p
ix

e
ls

10 20 30 40

10

20

30

40

Estimated Object 2CH

pixels

p
ix

e
ls

10 20 30 40

10

20

30

40

Measured Data d(x,y)

pixels

p
ix

e
ls

10 20 30 40

10

20

30

40

True Intensity o(z,w)

pixels

p
ix

e
ls

10 20 30 40

10

20

30

40

 

Fig. 4.1: Results for: Lens = 160 cm; r0 = 15 cm; Signal Strength = 134k/200k photoelectrons; Point Source Spacing 
= 12 pixels; Iterations = 6000. Note: all Final Estimated Objects are for 3 CH results, except top right image. The 
TSE for the 2 CH is nearly double the 3 CH estimates and is shown in Table 4.1. The visual reproduction of the true 
intensity is close to the same for all deconvolutions.  

Table 4.1: TSE values for 160 cm lens results 

 TSE Value 

2 CH 7.32E
10

 

3 CH (α=123) 3.31E
10

 

3 CH (α=199) 3.25E
10

 

3 CH (α=300) 3.26E
10
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4.1.2:  120 cm Lens Results 
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Fig. 4.2: Results for: Lens = 120 cm; r0 = 15 cm; Signal Strength = 134k/200k photoelectrons; Point Source Spacing 
= 9 pixels; Iterations = 6000. Note: all Final Estimated Objects are for 3 CH results at differing α values, except top 
right image. The TSE for the 2 CH is nearly double the 3 CH estimates and is shown in Table 4.2. Visually the 3 CH 
is better. 

Table 4.2: TSE values for 120 cm lens results 

 TSE Value 

2 CH 7.13E
10

 

3 CH (α=123) 3.12E
10

 

3 CH (α=199) 3.13E
10

 

3 CH (α=300) 3.15E
10

 

 

 Visually, it is difficult to discriminate if the three channel algorithm provides a closer reproduction of the 

true intensity, which effectively demonstrates better resolution. The TSE values in Table 4.2 provide a numerical 

metric for comparing performance showing the three channel algorithm’s superiority.  
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Fig. 4.3: Results for: Lens = 120 cm; r0 = 15 cm; Signal Strength = 134k/200k photoelectrons; Point Source 
Spacing = 9 pixels; Iterations = 448k/500k. Note: the color inversion from other images and that the 3CH 
performs better because both of the darkest pixels are exactly where they are supposed to be, which is pixel (16, 
16) and (25, 16). The TSE values are 1.22E10 for the 3 CH and 1.62E10 for the 2 CH.  

 The best way to actually determine which algorithm works better is to analyze the TSE values. In all 

simulation cases at 6000 iterations the TSE values for the two channel are more than double that of the three channel 

results. Figure 4.3 shows an exception to this statement. In this figure it is evident that the three channel algorithm 

outperforms in visual reconstruction of the true intensity, because the darkest spots in the image are actually located 

in correct pixel locations with respect to the true intensity. These pixel locations are  and , hence the 

 separation for the  lens. It is also evident that the TSE value is lower, but only by 25% this time. 

The TSE value is important in this research because it provides quantification for both algorithms’ performances.  

4.2 Satellite Image 

 The satellite image simulation provides a better sense of both algorithms’ performance on a more complex 

image. There are three given sets of data needed for the satellite image simulation. Only the first two sets of given 

data are shown in the left and middle of Figure 4.4, while the third data set (angles of polarization data) is not shown 

because it looks identical to the polarized data image. The left image is the true intensity, which is the ideal satellite 

image. The second image is the polarization data, which represents the parts of the satellite reflecting polarized light. 

The right image is the measured data, which is a blurred version of the truth data due to the simulated system PSF. 

Figure 4.5 shows the images produced by the two and three channel algorithms. 
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4.2.1:  160 cm Lens Results 
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Figure 4.4: Left: True intensity. Middle: Polarized data. Right: Measured data (160 cm lens, r0=22 cm) 
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Figure 4.5: Left: True intensity. Middle: 3 channel estimate with 4000 iterations. Right: 2 channel estimate with 
4000 iterations. r0 = 22 cm. The TSE value of the 3CH is 2.58E10, which is approximately 60% the value of the 2 CH 
TSE at 4.25E10. This is consistent with the dual point source simulations. The visual results of the true intensity 
reconstruction are near identical. 

4.2.2:  120 cm Lens Results 
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Figure 4.6: Left: True intensity. Middle: Polarized data. Right: Measured data (120 cm lens blur, r0 = 15 cm, that is 
why the measured data appears more blurry than the measured data for the 160 cm, r0 = 22 cm.) 
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Figure 4.7: Left: True intensity. Middle: 3 CH estimate with 4000 iterations. Right: 2 CH estimate with 4000 
iterations. r0 = 15 cm. The TSE value of the 3CH is 2.94E10, which is approximately 60% the value of the 2 CH TSE 
at 4.79E10. This is consistent with the dual point source simulations. The visual results of the true intensity 
reconstruction are near identical. 

 When viewing the results for the satellite deconvolution in Figure 4.7 there is no visible difference between 

the results of both algorithms. Even if larger sized images were provided there would be no visible difference. Even 

though the three channel polarimeter will provide slightly higher resolution in the deconvolution, it is not significant 

enough to make a visible difference in the satellite image deconvolutions. In this case the TSE for the three channel 

algorithm was not quite half the value of the two channel algorithm, but closer to 60% of the two channel value. 

 Remember that the dual point source simulations for a  lens used a nine pixel separation, and 

twelve for the  lens.  Figure 4.8 shows how poorly both algorithms perform when the pixel separation is 

significantly decreased. Now, consider the satellite image, where it would be necessary to be able to deconvolve 

point sources with separations as little as two or three pixels to get a much better estimate of the true intensity. If 

both algorithms can barely deconvolve at nine pixels of separation, then how could they ever deconvolve details of 

the satellite image, which have details with two or three pixels worth of separation. In conclusion the algorithms do 

have slight differences in performance, but not enough difference to visually distinguish between both 

deconvolutions. The only way to distinguish between the three and two channel results is to compare TSEs and 

binary star results. The TSE for the two channel is still close to double the value of the three channel result. The 

error is evenly distributed through the illuminated portion of the images.  
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Figure 4.8: Comparison of the 3 and 2 channel algorithm at 6 pixel separation shows poor performance by both. 
The top images are the results for a 120 cm lens simulation with r0=15 cm. The bottom images are the results for 
a 160 cm lens simulation with r0=15cm. 
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5. Laboratory Imagery Results 

5.1 Laboratory Setup 

 Analysis of laboratory imagery with the three channel algorithm takes this research one step further in 

proving its success and efficacy. However, the given imagery and results in this section can only model actual data 

gathered from a telescope. The laboratory images were gathered as shown in Figure 5.1. The light source for this 

experiment was a light emitting diode (LED). Light passes through the multi-sized triple slit pattern to the lens, 

where it is then focused through a polarization analyzer to the CCD camera.  

LED

LENS

CCD Detector

Polarization 

Analyzer

Incoherent 

Light

Triple Slit Pattern

 

Figure 5.1: Laboratory Experiment Setup: light source is an LED. Light passes through the multi-sized triple slit 
pattern to the lens, where it is focused down to the CCD camera through a polarization analyzer. 

5.2 Laboratory Image Blur and Noise  

 The blurring that would be caused by atmospheric turbulence in astronomical images is accounted for in 

the lab images by defocusing the camera, so the laboratory images appear blurred (refer to Figure 5.2). This is a 

reasonable way to simulate the atmospheric turbulence assuming the severity of defocus is actually comparable to 

the severity of blurring caused by the atmosphere. One way to assure a reasonable amount of blurring due to defocus 

is to compare the OTF of the lab data to the simulated OTF as explained in section 3.1.1. This is a reasonable 

comparison because the OTF can be thought of as a low pass filter. If the filter’s (OTFs) can be matched to each 
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other by matching cutoff frequencies and overall shape of the curve, then it is reasonable to assume that they will 

have the same effect on any given truth data. 

 

Figure 5.2: Left: in focus image (True Intensity) of triple slit taken from CCD camera. Right: out of focus image of 
triple slit pattern to simulate blur in an image caused by atmospheric turbulence. Note: the polarization analyzer 
was removed for this picture. 

 The lab data PSF was created from the standard Richardson Lucy deconvolution algorithm given in 

Equation (5.1) [11], [13:1066]. However, instead of estimating new values of the object using old estimates of the 

object ( ) (where  is the Fourier transform of the measured data, is the Fourier transform of 

intensity, and is the complex conjugate of the OTF), now the PSF is going to be estimated in a similar way as the 

object was. This is shown in Equation (5.2), where the  symbol represents the correlation function. 
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Figure 5.3: A comparison of Lab generated OTF vs. Simulated data OTF ( ). The plots are nearly 
identical if the side lobes of the top plot are ignored, which means that these OTF’s are a match leading to the 
same effect on any given truth data. Cutoff frequencies for both plots are approximately -10k and 10k m-1. 

 The OTF of the lab data is the Fourier transform of after the algorithm in Equation (5.2) has 

converged. A plot of this OTF versus a plot of  from section 3.1.1 is shown in Figure 5.3. was 

generated using a lens diameter of  and an  of , which are the same parameters used in sections 4.1.2 

and 4.2.2. The bell shapes of the plots are a very good match to one another and they almost completely attenuate all 

spatial frequencies before and after the values of  and  respectively. This is excluding the fact 

that the lab data OTF has side lobes, which is something the ideal simulated data will never deal with. The key to 

assuring that these two plots are reasonably comparable is to ensure that the truth data image in simulation 

 is the same as the images measured for the lab data . 

 The dominant source of noise is still be assumed to be photon count noise as it was for the simulations, 

because the thermal noise is insignificant when compared to the photon count noise. Since the PSF was calculated 

using a Richardson Lucy algorithm, it must be assumed that the noise is modeled with Poisson statistics, because the 
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derivation to arrive at Equation (5.1) requires a Poisson model for the probability of a photon arrival (refer to 

Equation (3.6)) (Derivation Available in Appendix B).  

5.3 Laboratory Results 

 The results in Figure 5.4 show an overwhelmingly impressive performance by the three channel compared 

to the two channel algorithm. There are three different results shown for the two channel algorithm at the bottom of 

the figure. Each two channel result is based off of a deconvolution with the unpolarized channel of measured data 

along with either the 0˚,45˚, or 90˚ data. The two channel algorithm seemed to have some issues in noise 

amplification, which explains the white spots all over the images. The suspected reason for the three channel 

algorithms’ success is mostly due to the polarization diversity provided by three channels worth of polarized data, 

compared to the two channels’ need for an unpolarized and arbitrarily polarized channel of data. This concept and 

limitation is further explained in section 6.4.  
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Figure 5.4: Lab results at 1000 iterations: Top left: in focus image (True Intensity) of triple slit taken from CCD 
camera. Top middle: Unpolarized measured data. Top Right: 3CH deconvolution estimate. Bottom Left: 2CH 
deconvolution estimate with 0˚ data and unpolarized data. Bottom middle: 2CH estimate with 45˚ data. Bottom 
right: 2CH estimate with 90˚ data.  
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6. Limitations 

6.1:  ratio  

The most detrimental limitation in this research is the reality that the ratio  will always determine the severity 

of blurring. This fact is inescapable. Recall Equation (3.2), where the LEOTF is described, and Equation (3.39), 

where the maximum spatial frequency is given. Remember the in the exponent of Equation (3.2) and 

notice how the lens diameter  in the equation below can be substituted in for the numerator. This proves that the 

ratio of lens diameter to the seeing parameter determines level of blur in an image.  

 

6.2: No Blind Deconvolution:   

 A second limitation is that the three channel algorithm is not a capable of performing blind deconvolution. 

It was originally in the scope of this research effort to include blind deconvolution capability in the three channel 

algorithm. In simulation the estimated  equaled the true  value. Therefore, the system OTF was always predicted 

perfectly. For deconvolution of the laboratory data the PSF was calculated by use of the Richardson Lucy 

deconvolution algorithm. The impact of not being able to do blind deconvolution is not too severe, since in the case 

of advanced laboratories the seeing parameter can be measured separately.   

6.3: Lack of Algorithmic Autonomy (no stopping criteria) 

 A potential source of contention in this research is the lack of a stopping criterion for the deconvolution 

algorithm. The previous two channel research by Capt James included the use of a stopping criterion [6]. The 

criterion was based off of a total squared error comparison between the incomplete data and the estimated intensity 

per iteration versus the variance of the corresponding incomplete data [6:29]. The theory behind the stopping 

criterion is explained in his research and the comparison equation is given below as: 

 
(6.1)  
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 The main purposes of the criterion were to add autonomy to the deconvolution algorithm, and most of all to 

avert over-iteration of the estimated object. The issue of over-iteration is of no consequence in this research and is 

proven below, while the lack of autonomy is a potential limitation, but not of severe consequence. It is shown by 

simulation (Figure 6.2) that the total squared error of the final object estimate versus the true intensity continuously 

trends downward, and that the likelihood of the object being estimated as the true intensity always increases (Figure 

6.1). Theoretically the likelihood should always increase. There are slight spikes in the TSE plot showing that the 

TSE does not actually always go down, even though it trends downward. This does not mean that the algorithm does 

not work correctly, but is more likely a numerical issue in MATLAB (simulation program). Numerical issues like 

this can be attributed to round off errors in floating point numbers, or some of the logic added to the deconvolution 

algorithm to avoid dividing by zero.  

 

Figure 6.1: Likelihood of 3CH estimated object converging towards true intensity at 300k iterations. This 
simulation was run with 120cm diameter lens and an r0 = 15cm. 
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Figure 6.2: Total Squared Error of 3CH estimated object versus true intensity at 448k iterations. This simulation 
was run with 120cm diameter lens and an r0 = 15cm. 

6.4: Diversity of Multi-Channel Data due to Polarization  

 The more diversity there is in a set of data, whether it is two or three channels worth of data will give a 

better deconvolution with both the two and three channel algorithms. In the case of the laboratory data the three 

channel significantly outperforms the two channel because of this fact. Figure 6.3 below shows that the 45˚ data is 

significantly affected by the setting of the polarization analyzer. This channel of data is completely missing the 

lowest bar worth of light, because it was blocked by the polarization analyzer at a 45˚ setting. The two channel 

algorithm did not perform nearly as well, because it required an unpolarized channel of data along with a polarized 

channel (0˚ used in comparison in Chapter 5), where there wasn’t enough diversity to allow for a better 

deconvolution. If there were less diversity in the three sets of data, then the potential for success in deconvolution is 

significantly hampered. This is one significant downfall for multi-channel polarimeter based deconvolution 

algorithms.  

0 degree data 45 degree data 90 degree data

 

Figure 6.3: 3 channels worth of laboratory data. Shows that the polarization analyzer set at 45˚ impacts the triple 
bar image by blocking light from the 3rd bar (or lowest bar).  
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7. Conclusions 

 Atmospheric turbulence will always have a degenerative effect on imagery, which is dependent on the 

earth’s atmosphere as a medium for light to travel. Polarimetry in conjunction with deconvolution has proven to be 

an effective method for mitigating these negative atmospheric effects. The reason polarimetry is so effective is that 

it creates the potential for diversity in imagery, which is advantageous for the three channel algorithm. More 

importantly, it shows that the three channel algorithm always outperforms the two channel, even though in some 

cases resulting imagery may appear to be the same. Simulations showed that TSE estimates were always 

significantly better, while visual comparisons for the three channel were always better or the same as the two 

channel. Conversely, in the laboratory comparison the three channel provided a far superior reconstruction of the 

true image, while the two channel had apparent issues with noise amplification. 

 Though there are some limitations with the three channel algorithm as described in Chapter 6, there is 

definite potential for future research to be done in continuation with the developed algorithm. This research effort 

only consists of results from a laboratory and simulation environment, so the obvious next step is to use the three 

channel algorithm with actual telescope imagery. There also needs to be more research done in the area of 

developing effective stopping criteria for the deconvolution algorithm, since the only stopping criteria used is a 

declaration of maximum iterations. Once this is successfully completed the algorithm can start to be used in an 

operational environment to actually assist the DoD in space situational awareness. There is also potential for the 

three channel algorithm to be combined with concepts of other research, such as described in Milo Hyde’s IEEE 

article, “Material Classification of an Unknown Object Using Turbulence-Degraded Polarimetric Imagery.” If this 

research is continued and completed it may provide significant capability to the DoD, and as a result better national 

security for our wonderful United States of America. 
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 

Detector Plane coordinates:  x,y 

Observation Plane coordinates:  z,w 

Incomplete data (measured): d1(x,y), d2(x,y), d3(x,y) 

Complete Data mythical:   

True unaberrated image (object):  o(z,w) 

Simulated image (intensity):  i1(x,y), i2(x,y), i3(x,y) 

Point Spread Function: h(x-z, y-w) 

Pixels, or image size: N 

Polarization parameter: P(z,w) 

Transmission of 3 polarizers: 1/2  

Step 1: Obtain Statistical Model for the Measured Data 

 

 
Note: only half of the light is unpolarized, since the polarizer cuts half out 

(1)  

 (2)  

 (3)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 (4)  

Step 2: Invent a set of Mythical Data (Complete Data) 

 (5)  

 (6)  

 

 

Where unpolarized complete data is the same so,  

(7)  

Step 3: Select a Statistical Model for the Complete Data 
Note: data chosen to be Poisson because the sum of Poisson random variables is a Poisson random variable 

 

 
Where P(z,w)=0 in unpolarized case 

(8)  

 (9)  

 (10)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 (11)  

Step 4: Formulate the Complete Data Log-Likelihood  

 

(12)  

 (13)  

 

 

 
(14)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 (15)  

 (16)  

 (17)  

 (18)  

 

 

MAP (Maximum a Posteriori) Estimation: MAP Estimation is used because the polarization information is known prior to maximization calculations. 

MAP Estimation will try to maximize , while Maximum Likelihood tries to maximize . 

 (19)  

 

 can be disregarded because it does not have the parameters: P(z,w), o(z,w), or C(z,w), and vanishes when the derivative is taken in the 

Maximization step. 

 (20)  

 

The higher the n value in the Super Gaussian PDF, the more it models a step function. In reality P(z,w) must always be less than 1. This PDF is chosen 
because it can be modeled as step function to drop at one, therefore mathematically making it very unlikely to get a number greater than 1 for P(z,w). 
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

Step 5: Expected Value 

 (21)  

Aside: d = d1+d2, where d is true measured data, d1≡ one instance of a given sum, d2 ≡ all other instances of the sum ∴ d is a sum of measured data. 
Now equate: 

 (22)  

 

 
Refer to EQNs 1-3 for E[d ] 

 

(23)  

 

 (24)  

 (25)  

 (26)  

 (27)  

 (28)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 (29)  

 (30)  

 (31)  

 (32)  

 

(33)  

 

(34)  

 

(35)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 

(36)  

 (37)  

 

Substitute EQNs 29-32 into 38-41 respectively: 

 

(38)  

 

(39)  

 

(40)  

 

(41)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

Notice that the  terms dropped off in EQNs 33-36. This happens because their derivatives will be equal to 0 in the next step, since 
derivatives will be with respect to o(z,w), not oold(z,w).  

Step 6: Maximization 

 (42)  

 (43)  

 (44)  

 (45)  

 (46)  

 

Derivative of natural log note:  

 

 

Rule of PSFs note:  will always double sum to = 1, because the law of the conservation of energy is broken if the double sum is greater than 1. 
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 

(47)  

 (48)  

 (49)  

 (50)  

 (51)  

 (52)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 (53)  

Algebra to simplify o(z0,w0): 

 

Note: h =1 due to the (refer to Rule of PSF’s note above EQU 47) 
(54)  

 (55)  

 (56)  

 

 Now differentiate only Q4 with respect to C3(z0,w0): 

 (57)  

 (58)  

 

Now differentiate Q with respect to P(z0,w0): 

 (59)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 (60)  

 (61)  

 (62)  

Canceling out C1 and C2 terms: 

 (63)  

 (64)  

Combine the four remaining  terms:  

 (65)  

 (66)  

 (67)  
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Appendix A: 3 Channel Polarimetric Data Deconvolution Algorithm Derivation 2011 

 (68)  

 (69)  

 

Last Step: Substitute EQU 56 into EQU 68 

 (70)  

 (71)  

Note: Ignore common denominator, because the main idea of maximization after taking the derivative of all the Q terms is to set   equal to zero. This 

happens when the numerators are equal to zero. 
(72)  

 (73)  

 (74)  
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Appendix B: Derivation for Assumed Poisson Noise in Richardson Lucy Algorithm 

(Provided by: Dr. Stephen Cain, ENG780-Statistical Optics Class Notes) 
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Deconvolution with Poisson Noise
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Deconvolution with Poisson Noise
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